The Bean Plataspid, *Megacopta cribraria*, Feeding on Kudzu: an Accidental Introduction with Beneficial Effects

Jim Hanula¹, Yanzhuo Zhang² and Scott Horn¹

¹USDA Forest Service, Southern Research Station, Athens, GA ²Dept. of Entomology, Univ. of Georgia, Athens

Kudzu: the vine that ate the South

• Massive root system up to 12 feet deep and 300 lbs.

Distribution of Kudzu

EDDMapS. 2012. Early Detection & Distribution Mapping System. The University of Georgia - Center for Invasive Species and Ecosystem Health. Available online at http://www.eddmaps.org/; last accessed March 1, 2012.

Kudzu Facts

- Native to Asia kudzu was introduced in 1876 at the Philadelphia Centennial Exposition by Japan
- Initially promoted as an ornamental
- In early 1900's it was promoted it as a forage crop
- 1930's and 40's widely distributed for erosion control by the Soil Erosion Service
- By 1946 over 1.2 million hectares (3 million acres) planted
- In 1999 Time magazine listed kudzu's introduction as one of the 100 worst ideas of the century
- Today kudzu is a federally listed noxious weed that occupies 3 million ha (7.4 million acres).
- Estimated that 50,000 ha (123,550 acres) of new infestation each year
- \$100-500 million estimated annual losses in forest productivity

The Bean Plastaspid aka "the kudzu bug" *Megacopta cribraria* (Hemiptera: Plataspidae)

The Kudzu Bug

- Native to Asia
- First discovered near Atlanta in 2009 on houses
- Rapid spread!
- New family for North America
- Obligate symbiotic bacteria

Distribution in Asia

2-3 generations/yr
Extensive list of hosts from Asian literature; primarily legumes (Eger et al. 2010).
Not considered a major pest of soybeans in China.
U.S. population is from Japan (Jenkins et al. 2012).

Suiter D.R. et al. 2010. Discovery and distribution of *Megacopta cribraria* (Hemiptera: Heteroptera: Plataspidae) in Northeast Georgia. Journal of Intergrated Pest Management. 1(1): 1-4. 5407744

What's its Biology on Kudzu? and

- Will it Have a Significant Impact on Kudzu?
- 1) In 2010and 2011 we took weekly samples of kudzu and examined for *M. cribraria*.
- 2) We developed a simple method for monitoring adult flight activity and monitored that in 2010 and early 2011.
- 3) We measured the impact of *M. cribraria* on kudzu in 2010, 2011 and 2012.

Provided by Dr. Joe Eager

11

First Instar Nymphs

Nymphs

Trapping M. Cribraria

Trapping M. cribraria Trap Color

M. cribraria trap catch over time

Time

Sprayed five 5 m² plots biweekly with Cyonara (Lambda-cyhalothrin)

Weeded the border of plots

Kudzu Bug Impact on Kudzu Harvesting Kudzu

Separate leaves and stems

Dried and weighed leaves and stems

In 2010, M. cribraria reduced kudzu biomass 33%.

In 2011, biomass was 52% lower than the 2010 sprayed plots.

In 2012 the difference was about 40%.

September 2010

September 2012

Kudzu Bug Population Trend?

Host Range

Common Name [Tribe (subtribe)]	Number of adults	Number of eggs	Number of adults developed from eggs
Kudzu [Phaseoleae (Glycininae)]	75.0 ± 15.5 ab	528.8 ± 57.4 a	N/A
Soybean [Phaseoleae (Glycininae)]	0.4 ± 0.2 c	320.0 ± 135.2 b	14.2 ± 5.7
Hairy lespedeza [Desmodieae]	0.6 ± 0.6 c	122.2 ± 12.6 c	0
Sericea lespedeza [Desmodieae]	0.8 ± 0.6 c	108.4 ± 57.0 c	0
American wisteria [Millettieae]	0.8 ± 0.5 c	18.8 ± 11.8 c	0
Yellowwood [Sophoreae]	105.2 ± 23.5 a	5.0 ± 3.5 c	0
Blackeyed pea [Phaseoleae (Phaseolinae)]	0	2.2 ± 2.2 c	0
Lablab [Phaseoleae (Glycininae)]	0	1.6 ± 1.6 c	0
Black locust [Robinieae]	72.2 ± 19.2 b	0	0
Red bud [Cercideae]	0.2 ± 0.2 c	0	0
Mimosa [Ingeae]	0.4 ± 0.4 c	0	0
Wild indigo [Thermopsideae]	0.4 ± 0.2 c	0	0

The Economics of the Kudzu Bug

- The kudzu bug has caused a 33% reduction in kudzu growth in one year and possibly up to 40-50% after two to three years of feeding.
- It also attacks soybeans reducing yield 19-25%.
- It is attracted to white houses and many homeowners are having their houses treated.
- It enters shipping containers and airplanes and has been intercepted in other countries and Guatemala placed a quarantine on 3 states for a short time.

The Annual Cost of Kudzu

Grebner, D.L. et al. 2011. Kudzu control and impact on monetary returns to non-industrial private forest landowners in Mississippi. J. Sus. For. 30: 204-223.

- Eradicating kudzu and replacing it with pines will result in an annual land expectation value (LEV) of \$84/acre/yr.
- If this were applied to the estimated 7 million acres of kudzu the annual LEV would be \$590,000,000. Much lower for hardwoods (\$115 million/year).
- Estimated cost of controlling kudzu bug on soybeans in the south on 9.5 million acres is \$95 million/insecticide application.

Large Scale Kudzu Control A Win – Win – Win – Win

- Benefits
 - Forestry
 - Municipalities and homeowners
 - Reduces risk of exportation
 - Reduces cost of power line maintenance
 - Reduces cost of rail and highway right-of-way maintenance
 - Reduces damage to soybeans

Questions?

